March, 2023

P. F. de Araujo-Filho, M. Naili, G. Kaddoum, E. T. Fapi and Z. Zhu, “Unsupervised GAN-Based Intrusion Detection System Using Temporal Convolutional Networks and Self-Attention,” in IEEE Transactions on Network and Service Management.

Abstract

Fifth-generation (5G) networks provide connectivity to a massive number of devices and boost a plethora of applications in several different domains. However, the large adoption of connected devices increases attack surfaces and introduces several security threats that can severely damage physical objects and risk people’s lives. Despite existing intrusion detection systems (IDSs), there are still several challenges to be addressed in the detection of cyber-attacks. For instance, while unsupervised IDSs are required to detect zero-day attacks, they usually present high false positive rates. Moreover, most existing IDSs rely on long short-term memory (LSTM) networks to consider time-dependencies among data. However, LSTM networks have recently been shown to present several drawbacks and limitations, which put into question their performance on sequence modeling tasks. Thus, in this paper, we investigate generative adversarial networks (GANs), a promising unsupervised approach to detecting attacks by implicitly modeling systems, and alternatives to LSTM networks to consider temporal dependencies among data. We propose a novel unsupervised GAN-based IDS that uses temporal convolutional networks (TCNs) and self-attention to detect cyber-attacks. The proposed IDS leverages edge computing and is proposed for edge servers, which bring computation resources closer to end nodes. Experiment results show that our proposed IDS can be configured to satisfy different detection rate and detection time requirements. Moreover, they show that our IDS is more accurate and at least 3.8 times faster than two state-of-the-art GAN-based IDSs that are used as baselines.

Authors

Paulo Freitas de Araujo-Filho, Centro de Informática, Universidade Federal de Pernambuco (UFPE), Recife, Brazil

Mohamed Naili, Ericsson GAIA Montreal, Canada

Georges Kaddoum, Electrical Engineering Department, École de Technologie Supérieure (ÉTS), University of Quebec, Montreal, Canada

Emmanuel Thepie Fapi, Ericsson GAIA Montreal, Canada

Zhongwen Zhu, Ericsson GAIA Montreal, Canada

Comentários desativados

Sobre este site

Portal institucional do Centro de Informática – UFPE

Encontre-nos

Endereço
Av. Jornalista Aníbal Fernandes, s/n – Cidade Universitária.
Recife-PE – Brasil
CEP: 50.740-560

Horário
Segunda–Sexta: 8:00–18:00